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Outline:

1. Numerical methods: pseudospectral multidomain evolution.
2. Binary black hole evolutions using the KST formulation.
3. A new generalized harmonic formulation.



|. Numerical Methods:
Pseudospectral Multidomain Evolution
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Use pseudospectral discretization

e Write solution as sum of N basis functions ¢x(x): U™ (x,t) =y Gi(t) g(x)

— For smooth u(x,t), error ~ gN

e Construct discrete inverse transform: Z)Wﬂ Xn, ¢k( )

— Requires careful choice of collocation points {X}.
— Can transform at will (with no error!) between u™N)(x,,t) and Gi(t).

e To solve nonlinear hyperbolic PDEs:

— Compute derivatives in spectral space.

— Compute nonlinear terms in physical space.

— Time integration via method of lines.

— Boundary conditions imposed analytically on characteristic fields (so excision is trivial).
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Characteristic decomposition

e Einstein evolution equations written in
first-order hyperbolic form.

e Hyperbolicity guarantees complete set of

— characteristic fields  u®
— characteristic speeds Vg t

e Boundary conditions required on
all incoming  (v(g) < 0) characteristic fields.
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e Spectral domain must be mapped to simple shape.
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e Boundary conditions: fill ingoing characteristic fields from neighbor.



Domain decomposition

e 54 subdomains:

— 2 inner spherical shells (1 per BH)
— 43 rectangular subdomains.

— 6 subdomains = 1 'cubed sphere’
— 3 outer spheres (10 I,.x = 320MgR)




Il. Binary Black Holes using KST



KST evolution: Basic setup

Evolution: Free evolution, KST formulation.

Kidder,Scheel, Teukolsky PRD 64, 064017 (2001)

Initial Data: QE Conformal Thin Sandwich (See Harald Pfeiffer’s talk)
— sep_10.00 59a.tgz from http://www.tapir.caltech.edu/~harald/PubliclD
— Orbital period 156Mgy

Boundary Conditions:

— No boundary condition at horizons (none needed!)

— Constant-incoming-characteristic-BCs (like Sommerfeld) at r = 320Mgp.
Gauge Conditions:

— Initial data gives lapse, shift in corotating frame.
— Shift and densitized lapse held constant in time.


http://www.tapir.caltech.edu/~harald/PublicID

KST evolution: Psi4

o Movie of |Wy|.




KST evolution: Constraint errors
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KST evolution: Constraint errors
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KST evolution: Shift adjustment

e Purpose: Keep all AHs at constant coordinate locations.

e To implement near each hole:

— SetB' =B ... +6ran(6,0)f(r)(X/r)

— Choose f(r) so adjustment
falls off away from hole.

e Apply adjustment every ot,gjust = 0.5MgH.
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KST evolution: Constraint errors
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ICII,

KST evolution: Constraint errors

wall-clock time —> 6h 15h
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Shift adjustment keeps horizons
spherical.

— But ad hoc shift inadequate to
control coordinates everywhere.
How to fix?

— Driver gauge conditions.
— Elliptic gauge conditions.
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11l. A New Generalized Harmonic
Formulation
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First-order generalized harmonic system

e Motivation:

— Wish to reproduce Frans Pretorius’ impressive generalized harmonic results.
— Basic idea of generalized harmonic:

— New gauge fields H, defined by Ox* =%, = H*
— Only constraintis 6, =Hy, — T,
— Wave equations for 4-metric gy .
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e Motivation:

— Wish to reproduce Frans Pretorius’ impressive generalized harmonic results.
— Basic idea of generalized harmonic:

— New gauge fields H, defined by Ox* =%, = H*
— Only constraintis 6, =Hy, — T,
— Wave equations for 4-metric gy .

e Mathematical understanding (and our code!) is better developed for first-order
systems of equations. So construct first order system:

— Define variables as in Kashif Alvi’'s (2002) system:

Jepg = 4 —metric
Oep = hDop
naﬁ = N_l(at — Nkak)gocﬁ

— ®y,p variable introduces additional constraint: diQ,s — Py = Giij = 0.
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1st order generalized harmonic equations

e Multiples of constraints are added to evolution equations:

—NIgp — Ylqu)kocﬁ
..t ’}/chgjaB
4 1NQ G + 11N i

00ap — (14 71)N Gy
EXOI
8tl—lonﬁ
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1st order generalized harmonic equations

e Multiples of constraints are added to evolution equations:
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1st order generalized harmonic equations

e Multiples of constraints are added to evolution equations:

atgocﬁ - (1+ Yl)Nkakgaﬁ — _Nnaﬁ - 71Nkcbkocﬁ
8tCDjaﬁ — _I_’}/ZNCKJOCB
8tl'laﬁ = ...—I—}/oNQ;ﬁ(gu—l—’}/l’}/szcgkaB

— Y% damps gauge constraint ¢, (same damping term Frans uses).
— > damps dkGup — Prap = Ciap CONStraint.

— 11 controls shocks: (linear degeneracy for 3 = —1).

e Evolution equations symmetric hyperbolic for all v, Y2 and 7».

e Constraint propagation equations symmetric hyperbolic for all Y, 1 and 7.
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Constraint damping

e Single Schwarzschild BH in 3D.

— Spherical shell domain, inner boundary 1.8M, outer boundary 11.8M
— Standard (Sommerfeld-like) outer boundary conditions.
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Improved boundary conditions

e We have constructed constraint-preserving and no-incoming-Weyl BCs.

— Example: Schwarzschild with gravitational wave injected through boundary.
— Domain = two concentric shells, outer boundary 23.6M.

' | ' | ' |
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Improved boundary conditions
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| e |W,| extracted at outer
boundary (r = 23.6M)
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Corotation problem?

10 2:4 | | | | e Flat space (!) in spherical
12/ QR=094 shell of outer radius R.
10 1.8 X | e Coordinate system rotating at
0.9 frequency Q.
[e] /0% 08 o7
10'8 - e KST system does not have
this problem.
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Summary

e Pseudospectral multidomain evolutions efficient.

e KST Binary evolution still has gauge and constraint problems. Future work:
— Constraint projection.
— Better gauge conditions (driver or elliptic).

e New lst-order Generalized Harmonic promising.

— Constraint damping parameters work well.
— Constraint-preserving BCs effective.
— Must solve corotation problem. (or move the holes?)
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KST BBH blowup independent of domain decomposition
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